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Abstract 
The amplification of radiation is calculated in the beam 

frame for a free electron laser (FEL) with a planar or 
helical undulator.  The effect of the radiation force upon 
the transverse electron trajectory is included; this effect 
accounts for one-half of the gain in the undulator regime.  
Our calculated gain agrees with conventional formulas. 

1 INTRODUCTION 
In some FEL derivations, the effect of the radiation 

force upon the transverse electron motion (“force 
bunching” [1]) is neglected.  When force bunching is 
neglected, using a standard method for calculating the 
axial velocity yields conventional gain formulas [1], while 
an alternative method yields one-half of the conventional 
gain [2].  Thus, it is inconsistent to assume that force 
bunching is negligible in an FEL [2]. 

We calculate FEL gain in the low-gain-per-pass 
undulator regime, performing our analysis in the frame of 
reference moving with the electron beam.  In this frame, 
force bunching is easily included.  We show that force 
bunching accounts for one-half of the bunching and gain 
in the undulator regime.  For planar and helical 
undulators, our calculated gain agrees with conventional 
expressions, in which the helical gain is twice as large as 
the planar gain for a given wiggler parameter [3].   

2 TRANSVERSE MOTION 
For amplification of a weak radiation field by an 

ultrarelativistic beam, we include radiation in the 
transverse dynamics to model “force” bunching [1].  We 
first consider a planar undulator, in which an electron’s 
velocity deviates by less than the angle 1/βγ from the z-
axis, where γ >> 1 is the relativistic factor for the beam 
and β ≈ 1 is the velocity divided by the speed of light c.  
In an undulator, the electron motion is non-relativistic in 
the frame of reference moving with the beam as it enters 
the undulator, so we calculate the dynamics in this frame 
using SI units.  The relativistic factor and velocity 
describing this frame are denoted γ|| and β||c. 

The undulator field appears in this frame as linearly 
polarized radiation traveling in the negative-z direction, 
with electric field in the x-direction 

( ) ( )tzkEtzE wwwwx ω+= cos, o                        (1) 

The undulator magnetic field Bwy equals −Ewx /c, where ωw 
= β||ckw ≈ ckw > 0.  The undulator entrance obeys kwz+ωwt 
= 0. 

The radiation field is also linearly polarized, traveling 

in the z-direction, with  
( ) ( )rrrrrx tzkEtzE φ+ω−= cos, o                 (2) 

and magnetic field Bry = Erx /c, where ωr = ckr > 0. 
Consider an electron with constant axial velocity vz.  

The forced transverse oscillation from the undulator obeys 
( )( ) ( )ttzEcvmedtxd wxz ),(/1// 22 +=                      (3) 

where e < 0 is the electron charge and m is its mass.  The 
undulation velocity is therefore 

( ) ( )tzkcatzv wwwwx ω+−= sinˆ, ,                       (4) 

where 
cmeEa www ω−= /ˆ o                              (5) 

Similarly, the forced transverse oscillation velocity from 
the radiation is  

( ) ( )rrrrrx tzkcatzv φ+ω−= sin, ,                       (6) 

where 
cmeEa rrr ω−= /o                              (7) 

Any axial velocity function may be approximated to 
arbitrary accuracy by constant-velocity segments, so that 
eqs. (4)–(7) also apply when the axial velocity is not 
constant.  Since vwx = 0 at the undulator entrance, a 
matched beam flows parallel to the axis with γ|| = γ.  Our 
assumption of non-relativistic velocities requires wâ  << 1. 

3 AXIAL MOTION 
To describe “inertial” bunching, we include radiation in 

the axial dynamics [1].  An electron whose initial axial 
position z is 0 obeys, to lowest order in the radiation field 
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The solution with z(0) = dz/dt(0) = 0 is the sum of three 
functions describing radiation-independent axial motion, 
inertial bunching, and force bunching.  The radiation-
independent motion obeys d 2zo /dt 2 = (e/m)vwx Bwy where z 
≈ vo t on the right hand side (RHS) of the equation, with vo 
equaling the average axial velocity in the undulator.  The 
solution with zo(0) = dzo /dt(0) = 0 is 
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where ( )cvww /1ˆ o+ω≡ω  is the undulator frequency 

experienced by an electron with axial velocity vo .  For wâ  

<< 1, equation (9) gives the average axial velocity as  

4/ˆ 2
o cav w−=                                 (10) 

Inertial bunching [1] results from the axial radiation 
force on an electron, obeying d 2zi /dt 2 = (e/m)vwx Bry 
where z ≈ zo (t) on the RHS of the equation.  For wâ  << 1, 

approximating zo (t) ≈ vot on the RHS for the fundamental 
FEL mode gives the solution with zi (0) = dzi /dt(0) = 0 _________________________________ 
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where rw ω+ω≡ω+ ˆˆ  and rw ω−ω≡ω− ˆˆ , in which 

( )cvrr /1ˆ o−ω≡ω  is the radiation frequency experienced 

by an electron with axial velocity vo .  Since the 
undulation wavelength in the laboratory is independent of 
the electron’s axial velocity, the inertial bunching is also 
called “axial” bunching [1]. 

Force bunching [1] results from the transverse radiation 
force on an electron, obeying d 2zf /dt 2 = (e/m)vrx Bwy 
where z ≈ zo (t) on the RHS of the equation.  For wâ  << 1, 

approximating zo (t) ≈ vot on the RHS for the fundamental 
FEL mode gives the solution with zf (0) = dzf /dt(0) = 0 
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For effective amplification of radiation, ω–  << ω+ , so that 

( ) ( ) ( )
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(13) 
In the periodic undulator field, inertial bunching and force 
bunching are nearly equal when ω–  << ω+ . 

4 GAIN 
The change in an electron’s energy from interaction 

with the radiation obeys 

rxwxrxrx EevEev
dt

d +=ε                                 (14) 

where vrx , vwx and Erx are evaluated at the axial position 
z(t) calculated in the previous section.  The change in an 
average electron’s energy is given by averaging over the 
phase of the radiation φr .  To order Ero

2, the first term on 
the RHS does not contribute to this average, so that for 

2ˆwa  << 8 
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where k+ ≡ kw + kr and k– ≡ kw – kr .  Equation (13) gives 
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where 1+ωw/ωr ≈ 2/(1– 2ˆwa /4) for ω–  << ω+ . 

Let ∫ φε≡ε∆
T

r
dtdtd

0
 be the average energy change 

per electron from interacting with radiation.  Here, T is 

the undulator transit time, obeying NTw π=ω 2ˆ  with 

integer or half-integer N equaling the number of undulator 
periods.  Then, for ω–  << ω+ , eqs. (15) and (16) give 
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In the beam frame, the number of electrons passing 
through the undulator within a transverse area Ao during a 
time to is ne Aoβcto, so that the energy transferred to the 
forward wave is −ne Aoβcto∆ε, where ne is the electron 
density.  The time-averaged Poynting vector of the 
radiation is < S > = εocEro

2/2, with energy density < S >/c.  
Since the relative velocity between the forward wave and 
undulator is (1+β)c ≈ 2c, the electromagnetic energy 
passing through the undulator is (< S >/c)(1+β)cto Ao.  The 
radiation energy gain per pass therefore obeys 
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Equations (17) and (18) give for β ≈ 1 
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In the laboratory frame, the maximum transverse 
velocity divided by c is obtained from the transverse and 
axial velocities in the beam frame when |vwx | is largest: 

)]2/ˆ1γ(/[ˆγ/ 2
wwwlab aaa −≈=β −⊥ ,                      (20) 

where aw is the wiggler parameter.  The gain is given in 
the laboratory to lowest order in aw: 
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where ne-lab is the e-beam density, ωw-lab = ckw-lab is the 
angular undulation frequency, and Llab is the undulator 
length, all measured in the laboratory frame.  Here, 

labwlabrwlabw cTakakT ]γ2/)4/1()4/1([ 222 +−−=ω −−−   (22) 

where Tlab = Llab /c is the undulator transit time and kr-lab is 
the radiation wave number in the laboratory.  For optimal 
amplification, ω–T = 2.61, so that for N >> 1, γ >> 1 and 
aw << 1, maximum gain occurs for 

)2/1/(2 22
wlabwlabr akk +γ≈ −−  .                   (23) 

For aw << 1, the gain is twice as large as that resulting 
from inertial bunching alone. 

5 HELICAL UNDULATOR 
Consider a helical undulator in the frame of reference 

moving with a matched beam’s axial velocity at the 
undulator entrance.  Equations (1)–(7) are supplemented 
by equations describing radiation with y-polarization and 
motion in the y-direction.  The additional undulator 
electric field is  

( ) ( )2/cos, o π+ω+= tzkEtzE wwwwy ,                      (24) 

with additional magnetic undulator field Bwx = Ewy /c. 
( ) ( )2/cos, o π−φ+ω−= rrrrry tzkEtzE                   (25) 

describes the additional radiation whose magnetic field is 
Brx = −Ery /c.  The undulation velocity in the y-direction is 



( ) ( )tzkcatzv wwwwy ω+−= cosˆ, ,                          (26) 

while the forced transverse oscillation velocity from the 
radiation in the y-direction is  

( ) ( )rrrrry tzkcatzv φ+ω−−= cos, ,                    (27) 

Since vwy ≠ 0 at the helical undulator entrance (where 
kwz+ωwt = 0), a matched beam has γ|| < γ. 

The axial motion of an electron whose initial axial 
position z is 0 obeys, to lowest order in the radiation field 
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The solution with initial conditions z(0) = dz/dt(0) = 0 is 
the sum of three functions describing radiation-
independent axial motion, inertial bunching, and force 
bunching.  The radiation-independent motion obeys 
d 2zo /dt 2 = (e/m)(vwx Bwy – vwy Bwx) where z ≈ vo t on the 
RHS, with vo equaling the average axial velocity in the 
undulator.  The solution with zo(0) = dzo /dt(0) = 0 is 

( ) 0o =tz ,                               (29) 

indicating that the average axial velocity vo is zero. 
The inertial bunching term obeys d 2zi /dt 2 = 

(e/m)(vwx Bry – vwy Brx) where z ≈ 0 on the RHS.  The 
solution with  zi (0) = dzi /dt(0) = 0 is 
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where ω–  ≡ ωw – ωr . 
The force bunching term obeys d 2zf /dt 2 = 

(e/m)(vrx Bwy – vry Bwx) where z ≈ 0 on the RHS.  The 
solution with zf (0) = dzf /dt(0) = 0 is 
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Thus, 
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(32) 
Since ωw /ωr = 1 for ω– << ω+  ≡ ωw + ωr , force bunching 
accounts for one-half of the bunching. 

To order Ero
2, 
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where k+ ≡ kw + kr and 
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The average energy change per electron when ω– << ω+  is 
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For a helical FEL, the time-averaged Poynting vector of 
the radiation is < S > = εocEro

2, with energy density 
< S >/c.  Since the relative velocity between the forward 
wave and undulator is (1+β)c, the electromagnetic energy 
passing through the undulator is (< S >/c)(1+β)cto Ao.  The 
radiation energy gain per pass therefore obeys 
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Equations (35) and (36) give for β ≈ 1 
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In the laboratory frame, the transverse velocity divided 
by c obeys 

||γ/ˆγ/ wwlab aa ==β −⊥                          (38) 

where aw is the wiggler parameter and γ is the relativistic 
factor for the beam.  Using the relation 1/γ||

2 = (1+aw
2)/γ2 

we obtain the gain to lowest order in aw  
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where 

labwlabrlabw cTakkT ]γ2/)1([ 22+−=ω −−−            (40) 

Maximum gain occurs for 

)1/(2 22
wlabwlabr akk +γ≈ −−  .                   (41) 

The gain is twice as large as that from inertial bunching 
alone, and twice as large as that of a planar FEL with the 
same wiggler parameter.  Our gain expression agrees with 
the conventional expression for a helical FEL [1]. 

6 SUMMARY 
For planar and helical FELs, we have calculated the 

gain in the beam frame in the low-gain-per-pass undulator 
limit.  Inertial and force bunching give equal contributions 
to the gain in the undulator regime.  For planar and helical 
undulators, our calculated gain agrees with conventional 
expressions in which the helical gain is twice as large as 
the planar gain for a given wiggler parameter. 
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